Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mem. Inst. Oswaldo Cruz ; 114: e190210, 2019. tab, graf
Article in English | LILACS | ID: biblio-1101271

ABSTRACT

BACKGROUND The influence of Plasmodium spp. infection in the health of Southern brown howler monkey, Alouatta guariba clamitans, the main reservoir of malaria in the Atlantic Forest, is still unknown. OBJECTIVES The aim of this study was to investigate the positivity rate of Plasmodium infection in free-living howler monkeys in an Atlantic Forest fragment in Joinville/SC and to associate the infection with clinical, morphometrical, haematological and biochemical alterations. METHODS Molecular diagnosis of Plasmodium infection in the captured monkeys was performed by Nested-polymerase chain reaction (PCR) (18S rRNA and coxI). Haematological and biochemical parameters were compared among infected and uninfected monkeys; clinical and morphometrical parameters were also compared. FINDINGS The positivity rate of Plasmodium infection was 70% among forty captured animals, the highest reported for neotropical primates. None statistical differences were detected in the clinical parameters, and morphometric measures comparing infected and uninfected groups. The main significant alteration was the higher alanine aminotransferase (ALT) levels in infected compared to uninfected monkeys. MAIN CONCLUSIONS Therefore, Plasmodium infection in howler monkeys may causes haematological/biochemical alterations which might suggest hepatic impairment. Moreover, infection must be monitored for the eco-epidemiological surveillance of malaria in the Atlantic Forest and during primate conservation program that involves the animal movement, such as translocations.


Subject(s)
Animals , Male , Female , Disease Reservoirs/parasitology , Alouatta/parasitology , Malaria/veterinary , Monkey Diseases/parasitology , Brazil/epidemiology , Alouatta/blood , Malaria/blood , Malaria/epidemiology , Animals, Wild , Monkey Diseases/blood , Monkey Diseases/epidemiology
2.
Mem. Inst. Oswaldo Cruz ; 111(9): 570-576, Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-794731

ABSTRACT

Abstract Plasmodium falciparum and Plasmodium vivax have evolved with host switches between non-human primates (NHPs) and humans. Studies on the infection dynamics of Plasmodium species in NHPs will improve our understanding of the evolution of these parasites; however, such studies are hampered by the difficulty of handling animals in the field. The aim of this study was to detect genomic DNA of Plasmodium species from the faeces of New World monkeys. Faecal samples from 23 Alouatta clamitans from the Centre for Biological Research of Indaial (Santa Catarina, Brazil) were collected. Extracted DNA from faecal samples was used for molecular diagnosis of malaria by nested polymerase chain reaction. One natural infection with Plasmodium simium was identified by amplification of DNA extracted from the faeces of A. clamitans. Extracted DNA from a captive NHP was also used for parasite genotyping. The detection limit of the technique was evaluated in vitro using an artificial mixture of cultured P. falciparum in NHP faeces and determined to be 6.5 parasites/µL. Faecal samples of New World primates can be used to detect malaria infections in field surveys and also to monitor the genetic variability of parasites and dynamics of infection.


Subject(s)
Animals , Alouatta/parasitology , DNA, Protozoan/genetics , Malaria/veterinary , Monkey Diseases/parasitology , Plasmodium/isolation & purification , Brazil , Feces , Genotype , Malaria/parasitology , Plasmodium/classification
3.
Mem. Inst. Oswaldo Cruz ; 109(5): 608-617, 19/08/2014. tab, graf
Article in English | LILACS | ID: lil-720427

ABSTRACT

Plasmodium vivax infects human erythrocytes through a major pathway that requires interaction between an apical parasite protein, the Duffy binding protein (PvDBP) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). The importance of the interaction between PvDBP (region II, DBPII) and DARC to P. vivax infection has motivated our malaria research group at Oswaldo Cruz Foundation (state of Minas Gerais, Brazil) to conduct a number of immunoepidemiological studies to characterise the naturally acquired immunity to PvDBP in populations living in the Amazon rainforest. In this review, we provide an update on the immunology and molecular epidemiology of PvDBP in the Brazilian Amazon - an area of markedly unstable malaria transmission - and compare it with data from other parts of Latin America, as well as Asia and Oceania.


Subject(s)
Humans , Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Vivax/prevention & control , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Receptors, Cell Surface/immunology , Antibodies, Protozoan/blood , Antigens, Protozoan/chemistry , Brazil , Enzyme-Linked Immunosorbent Assay , Geography, Medical , Protozoan Proteins/chemistry , Receptors, Cell Surface/chemistry
4.
Mem. Inst. Oswaldo Cruz ; 109(5): 641-653, 19/08/2014. tab, graf
Article in English | LILACS | ID: lil-720431

ABSTRACT

Blood infection by the simian parasite, Plasmodium simium, was identified in captive (n = 45, 4.4%) and in wild Alouatta clamitans monkeys (n = 20, 35%) from the Atlantic Forest of southern Brazil. A single malaria infection was symptomatic and the monkey presented clinical and haematological alterations. A high frequency of Plasmodium vivax-specific antibodies was detected among these monkeys, with 87% of the monkeys testing positive against P. vivax antigens. These findings highlight the possibility of malaria as a zoonosis in the remaining Atlantic Forest and its impact on the epidemiology of the disease.


Subject(s)
Animals , Alouatta/parasitology , Malaria/veterinary , Monkey Diseases/epidemiology , Plasmodium/classification , Antibodies, Protozoan/blood , Brazil/epidemiology , Forests , Malaria/epidemiology , Malaria/parasitology , Monkey Diseases/parasitology , Polymerase Chain Reaction
5.
Mem. Inst. Oswaldo Cruz ; 109(1): 21-28, 02/2014. tab, graf
Article in English | LILACS | ID: lil-703648

ABSTRACT

The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.


Subject(s)
Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Carrier State/parasitology , DNA, Protozoan/analysis , Malaria/parasitology , Plasmodium/genetics , Polymerase Chain Reaction/methods , Chi-Square Distribution , Carrier State/diagnosis , Coinfection/diagnosis , Genes, rRNA/genetics , Microscopy , Malaria/diagnosis , Parasitemia/diagnosis , Parasitemia/parasitology , Plasmodium/classification , Reproducibility of Results , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
6.
Mem. Inst. Oswaldo Cruz ; 107(1): 39-47, Feb. 2012. ilus, mapas, tab
Article in English | LILACS | ID: lil-612804

ABSTRACT

Leishmania infantum (syn. Leishmania chagasi) is the etiological agent of visceral leishmaniasis (VL) in Brazil. The epidemiology of VL is poorly understood. Therefore, a more detailed molecular characterization at an intraspecific level is certainly needed. Herein, three independent molecular methods, multilocus microsatellite typing (MLMT), random amplification of polymorphic DNA (RAPD) and simple sequence repeats-polymerase chain reaction (SSR-PCR), were used to evaluate the genetic diversity of 53 L. infantum isolates from five different endemic areas in Brazil. Population structures were inferred by distance-based and Bayesian-based approaches. Eighteen very similar genotypes were detected by MLMT, most of them differed in only one locus and no correlation was found between MLMT profiles, geographical origin or the estimated population structure. However, complex profiles composed of 182 bands obtained by both RAPD and SSR-PCR assays gave different results. Unweighted pair group method with arithmetic mean trees built from these data revealed a high degree of homogeneity within isolates of L. infantum. Interestingly, despite this genetic homogeneity, most of the isolates clustered according to their geographical origin.


Subject(s)
Animals , Dogs , Humans , DNA, Protozoan/genetics , Genetic Variation/genetics , Leishmania infantum/genetics , Brazil , Cluster Analysis , Genotype , Leishmania infantum/isolation & purification , Microsatellite Repeats , Molecular Typing , Polymerase Chain Reaction , Random Amplified Polymorphic DNA Technique
7.
Mem. Inst. Oswaldo Cruz ; 106(supl.1): 12-26, Aug. 2011. ilus, graf, tab
Article in English | LILACS | ID: lil-597240

ABSTRACT

Enhanced understanding of the transmission dynamics and population genetics for Plasmodium vivax is crucial in predicting the emergence and spread of novel parasite phenotypes with major public health implications, such as new relapsing patterns, drug resistance and increased virulence. Suitable molecular markers are required for these population genetic studies. Here, we focus on two groups of molecular markers that are commonly used to analyse natural populations of P. vivax. We use markers under selective pressure, for instance, antigen-coding polymorphic genes, and markers that are not under strong natural selection, such as most minisatellite and microsatellite loci. First, we review data obtained using genes encoding for P. vivax antigens: circumsporozoite protein, merozoite surface proteins 1 and 3α, apical membrane antigen 1 and Duffy binding antigen. We next address neutral or nearly neutral molecular markers, especially microsatellite loci, providing a complete list of markers that have already been used in P. vivax populations studies. We also analyse the microsatellite loci identified in the P. vivax genome project. Finally, we discuss some practical uses for P. vivax genotyping, for example, detecting multiple-clone infections and tracking the geographic origin of isolates.


Subject(s)
Genetic Variation , Microsatellite Repeats , Plasmodium vivax , Protozoan Proteins , Genotype , Genetic Markers , Polymerase Chain Reaction
8.
Mem. Inst. Oswaldo Cruz ; 106(supl.1): 27-33, Aug. 2011. ilus, graf, tab
Article in English | LILACS | ID: lil-597241

ABSTRACT

Reliable molecular markers are essential for a better understanding of the molecular epidemiology of Plasmodium vivax, which is a neglected human malaria parasite. The aim of this study was to analyze the genetic diversity of P. vivax isolates from the Brazilian Amazon using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the highly polymorphic merozoite surface protein-3alpha (PvMSP-3α) gene. To accomplish this, 60 isolates of P. vivax from different endemic areas in the Brazilian Amazon were collected. The PvMSP-3α gene was amplified by nested-PCR. Three major types of the PvMSP-3α locus were detected at different frequencies: type A (68 percent), B (15 percent) and C (17 percent). A single sample showed two PCR fragments, which corresponded to infection with types A and C. PCR-RFLP analysis using the HhaI restriction enzyme for 52 isolates clearly identified 11 haplotypes, eight of which were from type A, two from type B and only one from type C. Seven other isolates did not show a clear pattern using PCR-RFLP. This result might be due to multiple clone infections. This study showed a high diversity of the PvMSP-3α gene among P. vivax isolates from the Brazilian Amazon, but also indicated that the detection performance of PCR-RFLP of the PvMSP-3α gene may not be sufficient to detect multiple clone infections.


Subject(s)
Humans , Antigens, Protozoan , Genetic Variation , Plasmodium vivax , Protozoan Proteins , Brazil , Genetic Markers , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Plasmodium vivax
SELECTION OF CITATIONS
SEARCH DETAIL